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A nonlocal Dynamic Stiffness Model (DSM) for free vibration analysis of Functionally
Graded Material (FGM) stepped nanostructures based on the Nonlocal Elastic Theory
(NET) is proposed. An exact solution to the equation of motion of a nanobeam element
according to the Timoshenko beam theory, NET, and taking into account position of the
neutral axis is constructed. Nondimensional frequencies and mode shapes of complete FGM
stepped nanostructures are easily obtained using the nonlocal DSM. Numerical results are
presented to show significance of the material distribution profile, nonlocal effect, and bound-
ary conditions on free vibration of nanostructures.
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1. Introduction

Functionally Graded Materials (FGMs) are a new generation composite materials that are made
up of two or more component materials with a continuous variation in the ratio of the compo-
nents in one or more directions. FGMs are employed in micro/nano electro-mechanical systems
(MEMS/NEMS) to archive high sensitivity and desired performance. Nano-sized structures such
as plates, sheets, beams and framed structures are widely used in NEMS devices. Steps in
nanostructures are considered as abrupt changes in the cross-sectional area such as CNT het-
erojunctions or two connected nanobeam portions with different material properties. Steps in
nanostructures may be manufactured on the purpose of attaining desired frequencies in some
applications such as a piezoelectric energy harvester (Usharani et al., 2018) or building blocks of
nanoelectromechanical and micro-electromechanical systems. However, steps in structures may
occur as a manufacturing defect. For this reason, stepped nanostructures are especially attracting
more and more attention due to their various potential applications.

Because of the size effect, classical elasticity theory cannot fully and accurately investigate
the mechanical behaviour of nanostructures. Therefore, Nonlocal Elasticity Theory (NET) was
first proposed by Eringen (2002) assuming that the stress tensor at one point is not only a
function of deformation but also includes all surrounding ones. Currently, NET is widely used to
formulate differential equations of motion of nanostructures using homogeneous materials and
FG materials. Reddy (2007) established equations of vibration and stability of homogeneous
nanobeams according to the NET for Euler-Bernoulli, Timoshenko, Reddy and Levinson beam
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theories. Many other authors have developed analytical methods (Wang et al., 2007), Rayleight-
-Ritz method (Chakraverty and Behera, 2015), Finite Element Method (FEM) (Eltaher et al.,
2013b), differential transform method (Ebrahimi and Nasirzadeh, 2015), differential quadrature
method (Jena and Chakraverty, 2018), and so on to consider bending, stability and free vibration
problems of nanobeams from homogeneous materials.

Şimşek and Yurtcu (2013), Rahmani and Pedram (2014) simultaneously studied bending and
buckling of Timoshenko FGM nanobeams using analytical methods. In addition, Mechab et al.
(2016) studied free vibration, while Uymaz (2013) researched on forced vibration of nanobeams,
both using higher-order shear deformation theory. Ebrahimi and Salari (2015) exploited a semi-
-analytical method to study vibration and buckling of Euler-Bernoulli FGM nanobeams consid-
ering position of the physical neutral axis. Malikan et al. (2021) applied the Galerkin weighted
residual method to address the axial stability and bifurcation point of a functionally graded
piezomagnetic structure containing flexomagneticity in a thermal environment. A spectral finite
element formulation was indicated by Narendar and Gopalakrishnan (2011) to investigate vi-
bration of nonlocal continuum beams. The analytical solutions found above are all in Navier’s
series, thus, they are limited to simply supported beams. For other boundary conditions, the au-
thors applied the FEM to analyze free vibration and buckling of FGM nanobeams according to
Euler-Bernoulli beam theory (Eltaher et al., 2013a) and Timoshenko theory (Aria and Friswell,
2019). Recently, the authors of (Trinh et al., 2018) found the solution for natural frequencies and
mode shapes of microbeams under various boundary conditions using the state-space concepts.

As the FEM is formulated on the base of a frequency-independent polynomial shape function,
it could not be used to capture all necessary high frequencies and mode shapes of interest. An
alternative approach called the Dynamic Stiffness Model (DSM) fulfilled the gap of the FEM
by using frequency-dependent shape functions that are considered as an exact solution of the
vibration problem in the frequency domain (Su and Banerjee, 2015; Lien et al., 2019). Although
exact solutions of the vibration problem are not easily constructed for complete structures, but
they, if available, are enable to study the exact response of the structure in an arbitrary frequency
range. Karličić et al. (2015) obtained the dynamic stiffness matrix of a nonlocal homogenous rod
in the closed form. The frequency response function obtained using the proposed DSM shows
extremely high modal density near the maximum frequency. Recently, Taima et al. (2020) studied
free vibration of multi-stepped Bernoulli-Euler nanobeams made of homogenous materials using
DSM.

To the best of the authors’ knowledge, the DSM based approach to nonlocal FGM nanostruc-
tures presents a gap that has to be fulfilled. In the present work, a nonlocal DSM is developed
to investigate free vibration characteristics of FGM stepped nanostructures on the basis of NET
and Timoshenko beam theory. Comparison between the obtained and published results shows
the reliability of the method. The effect of the nonlocal, material distribution profile and geom-
etry parameters on the vibration frequency and mode shapes of nanostructures with different
boundary conditions has been studied in detail.

2. Nonlocal DSM of a FGM nanostructure

For an FGM nanobeam (Fig. 1), the material properties vary along the thickness direction, and
are assumed to take the form (Eltaher et al., 2013a)

P (z) = Pb + (Pt − Pb)
(z
h
+
1

2

)κ
− 1
2
h ¬ z ¬ 1

2
h (2.1)

where P stands for Young’s modulus E, shear modulus G and mass density ρ, respectively,
the subscripts t and b refer to the corresponding values of the top and bottom layer materials,
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κ is the volume fraction index, and z is the coordinate from the mid-plane of the beam. The
displacement field of the Timoshenko beam is given by

u(x, z, t) = u0(x, t)− (z − h0)θ(x, t) w(x, z, t) = w0(x, t) (2.2)

where u0(x, t), w0(x, t) are the axial displacement, deflection of a point on the neutral axis,
respectively, h0 is the distance from the neutral axis to x-axis, θ is the angle of rotation of the
cross-section around the y-axis. From there, we get the strain components

εxx =
∂u0
∂x
− (z − h0)

∂θ

∂x
γxz =

∂w0
∂x
− θ = −ϕ (2.3)

Fig. 1. An FGM nanobeam

The nonlocal constitute equations for nanobeams can be written in the form (Eringen, 2002)

σxx − µ
∂2σxx
∂x2

= Eεxx σxz − µ
∂2σxz
∂x2

= Gγxz (2.4)

where µ = e20a
2 is a nonlocal parameter, e0 is a constant associated with each material, a is the

internal characteristic length. Using the Hamilton principle, equations of free vibration for the
FGM nanobeam can be derived in the form

A11
∂2u0
∂x2
−A12

∂2θ

∂x2
− I11

∂2u0
∂t2
+ I12

∂2θ

∂t2
+ µ
(
I11
∂4u0
∂x2∂t2

− I12
∂4θ

∂x2∂t2

)
= 0

A22
∂2θ

∂x2
−A12

∂2u0
∂x2
+A33

(∂w0
∂x
− θ
)
− I22

∂2θ

∂t2
+ I12

∂2u0
∂t2
− µI12

∂4u0
∂x2∂t2

+ µI22
∂4θ

∂x2∂t2
= 0

A33
(∂2w0
∂x2
− ∂θ
∂x

)
− I11

∂2w0
∂t2
+ µI11

∂4w0
∂x2∂t2

= 0

(2.5)

and the corresponding boundary conditions

u0 = 0 or A11
∂u0
∂x
−A12

∂θ

∂x
+ µ
(
I11
∂3u0
∂x∂t2

− I12
∂3θ

∂x∂t2

)
= 0

w0 = 0 or A33
(∂w0
∂x
− θ
)
+ µI11

∂3w0
∂x∂t2

= 0

θ0 = 0 or A12
∂u0
∂x
−A22

∂θ

∂x
+ µ
(
I11
∂2w0
∂t2
+ I12

∂3u0
∂x∂t2

− I22
∂3θ

∂x∂t2

)
= 0

(2.6)

where A11, A12, A22 and A33 are the rigidities, and I11, I12 and I22 are the mass moments of
inertia

(A11, A12, A22) =

∫

A

E(z)
(
1, z − h0, (z − h0)2

)
dA A33 = η

∫

A

G(z) dA

(I11, I12, I22) =

∫

A

ρ(z)
(
1, z − h0, (z − h0)2

)
dA

(2.7)
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where η is the shear correction factor, η = 5/6 for a rectangular cross-section. Neglecting the
influence of the axial displacement and the nonlocality effect, the position of the neutral axis h0
can be written by (Eltaher et al., 2013a)

h0 =
κ(RE − 1)h

2(κ + 2)(κ+RE)
RE =

Et
Eb

(2.8)

Setting

[U,Θ,W ] =

∞∫

−∞

[u0(x, t), θ(x, t), w0(x, t)]e
−iωt dt (2.9)

Equations of vibration (2.5) in the frequency domain can be obtained as

(A11 − µI11ω2)
d2U

dx2
− (A12 − µI12ω2)

d2Θ

dx2
+ I11ω

2U − I12ω2Θ = 0

− (A12 − µI12ω2)
d2U

dx2
+ (A22 − µI22ω2)

d2Θ

dx2
+A33

dW

dx
− I12ω2U

+ (I22ω
2 −A33)Θ = 0

(A33 − µI11ω2)
d2W

dx2
−A33

dΘ

dx
+ I11ω

2W = 0

(2.10)

Putting into the matrices and vectors as follows

Ã =



A11 − µI11ω2 −(A12 − µI12ω2) 0
−(A12 − µI12ω2) A22 − µI22ω2 0

0 0 A33 − µI11ω2


 z =



U
Θ
W




B̃ =



0 0 0
0 0 A33
0 −A33 0


 C̃ =



I11ω

2 −I12ω2 0
−I12ω2 I22ω2 −A33 0
0 0 I11ω

2




(2.11)

equations (2.10) can now be described in the form of

Ãz′′ + B̃z′ + C̃z = 0 (2.12)

Choosing solutions to Eq. (2.12) in the form of z0 = d exp(λx) leads to

(λ2Ã+ λB̃+ C̃)d = 0 (2.13)

Equation (2.13) have non-trivial solutions when

det(λ2Ã+ λB̃+ C̃) = 0 (2.14)

We receive cubic equations of η = λ2: η3+aη2+bη+c = 0. Using notations η1, η2, η3 as solutions
to the cubic equations and

λ1,4 = ±k1 λ2,5 = ±k2 λ3,6 = ±k3 kj =
√
ηj j = 1, 2, 3 (2.15)

the general solutions of Eq. (2.12) are in the form as z(x, ω) =
∑6
j=1 dj exp(λjx). From the first

and third equations of (2.12), we yield
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z(x, ω) =



α1C1 α2C2 α3C3 α4C4 α5C5 α6C6
C1 C2 C3 C4 C5 C6
β1C1 β2C2 β3C3 β4C4 β5C5 β6C6



[
ek1x, ek2x, ek3x, e−k1x, e−k2x, e−k3x

]T

(2.16)

where C = [C1, . . . , C6]
T are independent constants and

α1 =
(A12 − µI12ω2)k21 + I12ω2
(A11 − µI11ω2)k21 + I11ω2

= α4 β1 =
A33k1

(A33 − µI11ω2)k21 + I11ω2
= −β4 (2.17)

Similarly, α2 = α5, β2 = −β5, α3 = α6, β3 = −β6, Eq. (2.16) can be rewritten in the form

[z(x, ω)]T = G(x, ω)C (2.18)

where

G(x, ω) =



α1e
k1x α2e

k2x α3e
k3x α1e

−k1x α2e
−k2x α3e

−k3x

ek1x ek2x ek3x e−k1x e−k2x e−k3x

β1e
k1x β2e

k2x β3e
k3x −β1e−k1x −β2e−k2x −β3e−k3x


 (2.19)

Fig. 2. Node coordinates, nodal loads of a nanobeam element

Let us consider a two-dimensional FGM nanobeam element as shown in Fig. 2. Nodal dis-
placements and forces of the element are introduced as

Ûe = [U1, Θ1,W1, U2, Θ2,W2]
T Pe = [N1,M1, Q1, N2,M2, Q2]

T (2.20)

where

U1 = z1(0, ω) Θ1 = z2(0, ω) W1 = z3(0, ω)

U2 = z1(L,ω) Θ2 = z2(L,ω) W2 = z3(L,ω)

N1 = −[(A11 − µI11ω2)∂xz1 − (A12 − µI12ω2)∂xz2]x=0
Q1 = −[(A33 − µI11ω2)∂xz3 −A33z2]x=0
M1 = −[(A12 − µI12ω2)∂xz1 − (A22 − µI22ω2)∂xz2 − µI11ω2z3]x=0
N2 = [(A11 − µI11ω2)∂xz1 − (A12 − µI12ω2)∂xz2]x=L
Q2 = [(A33 − µI11ω2)∂xz3 −A33z2]x=L
M2 = [(A12 − µI12ω2)∂xz1 − (A22 − µI22ω2)∂xz2 − µI11ω2z3]x=L

(2.21)

Substituting expression (2.18) into (2.21), we get

Ûe =

[
G(0, ω)
G(L,ω)

]
C Pe =

[
−BF (G)x=0
BF (G)x=L

]
C (2.22)
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with BF being the matrix operator

BF =



(A11 − µI11ω2)∂x −(A12 − µI12ω2)∂x 0
(A12 − µI12ω2)∂x −(A22 − µI22ω2)∂x −µ11ω2

0 −A33 (A33 − µI11ω2)∂x


 (2.23)

Eliminating the constant vector C in equation (2.22) leads to

Pe(ω) =

[
−BF (G)x=0
BF (G)x=L

] [
G(0, ω)
G(L,ω)

]
−1

Ûe = K̂e(ω)Ûe (2.24)

where K̂e is the dynamic stiffness matrix of the FGM nanobeam element.
For a given structure that consists of a number of FGM nanobeam elements like above, by

means of balancing all the internal forces at every node of the structure, there will be obtained
the total dynamic stiffness matrix K̂(ω). Letting Û be the total DOF vector of the structure,
the equation of motion for the dynamic stiffness model is

K̂(ω)Û = 0 (2.25)

Therefore, the natural frequencies ω = [ω1, ω2, . . . , ωn] can be found from the following equation

det K̂(ω) = 0 (2.26)

and the mode shape related to the frequency ωj is

{ϕj(x)} = C0j Ĝ(x, ωj)Ûj (2.27)

where

Ĝ(x, ω) = G(x, ω)

[
G(0, ω)
G(L,ω)

]
−1

(2.28)

C0j is an arbitrary constant and Ûj is the normalized solution corresponding to ωj.

3. Numerical results and discussion

3.1. Comparison of calculation results and published results

In this Subsection, the numerical results are compared with the published results to vali-
date the present study. The first comparison is made for nondimensional fundamental frequen-
cies λ1 = ω1L

2/
√
ρt/Et of simply supported FGM nanobeams with the following geometric

and material properties: Et = 70GPa, ρt = 2702 kg/m
3, Eb = 380GPa, ρb = 3960 kg/m

3,
vt = vb = 0.3 and various nonlocal parameters µ

∗ = (e0a/h)
2, volume fraction indexes and

ratios L/h (Aria and Friswell, 2019). As can be seen in Table 1, the calculated results which
used the DSM with 1 element are in a very accurate agreement with the results published by
Aria and Friswell (2019) who used the FEM with 26 elements. The accurate agreements are
received for other boundary conditions such as fixed-pinned, fixed-fixed and fixed-free.
The second comparison is made for nondimensional frequencies λi = ωiL

2
√
ρtA/EtI,

i = 1, 2, 3 of a portal frame consisting of three beams AB, BC and CD as shown in Fig. 3
(Banerjee and Ananthapuvirajah, 2018). The supports at both points A and D can be either
simply supported (Fig. 3a) or clamped (Fig. 3b). All three members of the portal frame are
assumed to have the same rectangular cross-section and length of 1m. The width and height of
the cross-section are 0.04m and 0.02m, respectively. Numerical computation is accomplished in
the three following scenarios:
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Table 1. Comparison of the nondimensional fundamental frequencies of FGM nanobeams with
various nonlocal parameters, volume fraction indexes and ratios L/h

µ∗
κ = 0.1 κ = 0.5 κ = 1 κ = 2 κ = 5
A Present A Present A Present A Present A Present

L/h = 20

0 3.3289 3.3289 3.9361 3.9361 4.2051 4.2051 4.4662 4.4662 4.8100 4.8100

1 3.2885 3.2885 3.8884 3.8884 4.1541 4.1541 4.4121 4.4121 4.7518 4.7518

2 3.2496 3.2496 3.8424 3.8424 4.1050 4.1050 4.3599 4.3599 4.6956 4.6956

3 3.2121 3.2121 3.7980 3.7980 4.0576 4.0576 4.3095 4.3095 4.6413 4.6413

4 3.1758 3.1758 3.7551 3.7551 4.0117 4.0117 4.2609 4.2609 4.5889 4.5889

5 3.1408 3.1408 3.7137 3.7137 3.9674 3.9674 4.2138 4.2138 4.5382 4.5382

L/h = 100

0 3.3427 3.3427 3.9512 3.9512 4.2203 4.2203 4.4819 4.4819 4.8272 4.8272

1 3.3411 3.3411 3.9493 3.9493 4.2183 4.2183 4.4797 4.4797 4.8248 4.8248

2 3.3395 3.3395 3.9473 3.9473 4.2162 4.2162 4.4775 4.4775 4.8224 4.8224

3 3.3378 3.3378 3.9454 3.9454 4.2141 4.2141 4.4753 4.4753 4.8200 4.8200

4 3.3362 3.3362 3.9434 3.9434 4.2120 4.2120 4.4731 4.4731 4.8177 4.8177

5 3.3345 3.3345 3.9415 3.9415 4.2100 4.2100 4.4709 4.4709 4.8153 4.8153

A – Aria and Friswell (2019)

(1) AB and CD are made of an isotropic material, BC is made of an FGM,

(2) AB and CD are made of an FGM, BC is made of a isotropic material,

(3) AB, BC and CD are all made of FGMs.

The isotropic material considered herein is steel with Young’s modulus 200GPa and density
7500 kg/m3. The FGM is composed of steel on the bottom and ceramic with Young’s modulus
380GPa and density 3960 kg/m3 on the top.

Fig. 3. A portal FGM frame

The first three nondimensional frequencies have been computed by the procedure proposed
above and compared to that obtained by Banerjee and Ananthapuvirajah (2018) in the simply
supported case at A and D and different values κ (Table 2). Obviously, the discrepancy between
the results does not exceed 1.8%. The comparison of the calculated data and published results
proves the reliability of the proposed nonlocal dynamic stiffness model.
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Table 2. Comparison of the frequency parameter computed in the present study with that given
in (Banerjee and Ananthapuvirajah, 2018) for the portal frame

λ
κ = 0.5 κ = 1 κ = 5

Present A Present A Present A
AB, CD – isotropic; BC – FGM

λ1 1.7031 1.6940 1.6424 1.6400 1.5389 1.5410

λ2 11.1714 11.0830 10.8728 10.8480 10.3528 10.3750

λ3 16.4054 16.2820 16.0141 15.9610 15.3747 15.3940

AB, CD – FGM; BC – isotropic

λ1 1.8361 1.8310 1.7446 1.7520 1.6004 1.6100

λ2 12.6414 12.6170 11.9589 12.0250 10.8447 10.9210

λ3 20.2246 20.3010 18.7312 18.9170 16.5509 16.6940

AB, CD, BC – FGM

λ1 2.1912 2.2110 1.9802 2.0150 1.6876 1.7080

λ2 14.7740 14.9060 13.3635 13.5830 11.3785 11.5180

λ3 22.2309 22.4340 20.1084 20.4380 17.1213 17.3340

A – Banerjee and Ananthapuvirajah (2018)

3.2. Free vibration of a stepped framed structure

To study the influence of stepped locations, volume fraction index, nonlocal parameter and
different boundary conditions on the first three nondimensional frequencies of the nanostruc-
tures from this Subsection, the FGM stepped framed structure with geometric and material
parameters as follows: L = 10 nm, b = h = 1nm, Et = 70GPa, ρt = 2700 kg/m

3, Eb = 393GPa,
ρb = 3960 kg/m

3, vt = vb = 0.3 will be discussed (Fig. 3). The calculated results for the first
three nondimensional frequencies λi = ωiL

2
√
ρtA/EtI, i = 1, 2, 3 include boundary conditions:

1) simply supported at both ends (S-S); 2) clamped at A and free at D (C-F ); 3) clamped
at both ends (C-C); and 4) clamped at A and simply supported at D (C-S), respectively. The
stepped height locations with h1/h = 0.8 move from A to D, where L1/L = 0 corresponds to
h1 = 0.8h on the whole beam, L1/L = 1 corresponds to h1 = h along the beam (Fig. 4).

Fig. 4. A FGM nanobeam with stepped height

Figures 5 and 6 show the changes of the first three nondimensional frequencies of stepped
FGM framed structures with different stepped locations, nonlocal parameter µ∗ = (e0a/h)

2,
volume fraction indexes and boundary conditions: S-S (Figs. 5a-c), C-F (Figs. 5d-f), C-C
(Figs. 6a-c), C-S (Figs. 6d-f). Observing the graphs given in Figs. 5a-l allows one to make
the following remarks:

• There exist positions or structural elements on FGM structures at which stepped locations
appear and make a distinct effect on certain nondimensional frequencies, especially the
fundamental frequency. Such positions are called here critical points for a given frequency.
Knowing the critical points, one can select stepped locations or structural elements of the
nanostructure in order to achieve the maximum or minimum values for the given frequency
(Figs. 5a,d,e,f and Figs. 6a,d). For example, as shown in Fig. 5a, the fundamental frequency
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Fig. 5. Changes of the first three nondimensional frequencies of stepped FGM framed structures with
different stepped locations, nonlocal parameter, volume fraction indexes and boundary conditions:

(a)-(c) S-S, (d)-(f) C-F

achieves the maximum and minimum values corresponding to the stepped locations at
0.3L and at 0.9L of the beam BC. The stepped locations on the beam BC make distinct
variations to the fundamental frequency of structures with the boundary conditions S-S.

• The changes of nondimensional fundamental frequencies of the stepped nanostructures
caused by the volume fraction indexes are more distinct than those caused by nonlocal
parameters (Figs. 5a,d and Figs. 6a,d). The gaps between every two consecutive graphs
follow the same increasing trend of the volume fraction index.
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Fig. 6. Changes of the first three nondimensional frequencies of stepped FGM framed structures with
different stepped locations, nonlocal parameter, volume fraction indexes and boundary conditions:

(a)-(c) C-C, (d)-(f) C-S

• When the nonlocal parameter increases, the nondimensional fundamental frequencies in
S-S, C-C and C-S boundary conditions decrease while the nondimensional fundamen-
tal frequency for the cantilever beam increases (Fig. 5d). This nonlocal paradox of FGM
nanostructures was also mentioned in (Li and Wang, 2009; Eltaher et al., 2013b; Gha-
vanloo et al., 2019; Taima et al., 2020) when considering vibration of Euler-Bernoulli and
Timoshenko homogeneous nanobeams.
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• The nondimensional frequencies achieved by the C-C boundary condition are higher than
C-S, S-S and C-F in most cases.

Fig. 7. The first three mode shapes of the FGM framed structure with different stepped locations,
nonlocal parameter and boundary conditions: (a) C-C with constant height, (b) C-C with the stepped
location at 0.3L on the beam BC, (c) S-S with constant height, (d) S-S with the stepped location

at 0.3L on the beam BC. For all plots, the volume fraction index κ is equal to 5

Figure 7 shows the first three mode shapes of the FGM framed structure with different
stepped locations, nonlocal parameter and the boundary conditions C-C (Figs. 7a,b) and S-S
(Figs. 7c,d). Figure 8 shows the first three mode shapes of the FGM framed structure with dif-
ferent stepped locations, volume fraction indexes and the boundary conditions C-C (Figs. 8a,b)
and S-S (Figs. 8c-d). Observing the graphs given in Figs. 7 and 8 allows one to make the
following remarks:

• Contrary to the changes of nondimensional frequencies, the changes of mode shapes of
the stepped nanostructures caused by nonlocal parameters are more distinct than those
caused by the volume fraction indexes. Moreover, the changes of mode shapes of the
stepped nanostructures are more distinct than those of the non-stepped nanostructures.
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Fig. 8. The first three mode shapes of the FGM framed structure with different stepped locations,
volume fraction indexes and boundary conditions: (a) C-C with constant height, (b) C-C with the
stepped location at 0.3L on the beam BC, (c) S-S with constant height, (d) S-S with the stepped

location at 0.3L on the beam BC. For all plots, the nonlocal parameter µ∗ is equal to 2

• The changes of the unsymmetric mode shapes (mode 1 and 3) of the stepped nanostructures
caused by nonlocal parameters are clearer than the changes of the symmetric mode shape
(mode 2).

• When the nonlocal parameter increases, the mode shapes of nanostructures for S-S bound-
ary conditions are the same as the corresponding mode shapes for local Timoshenko beams
(Figs. 7c,d and Figs. 8c,d). This nonlocal paradox of FGM nanostructures was also men-
tioned in (Wang et al., 2007; Li and Wang, 2009) when considering vibration of Timoshenko
homogeneous nanobeams.

4. Conclusion

In the present paper, a nonlocal dynamic stiffness model is proposed to investigate free vibration
of FGM stepped nanostructures based on the Nonlocal Elasticity Theory (NET) and Timoshenko
beam theory. The dynamic stiffness model fulfilled the gap of the finite element method by using
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frequency-dependent shape functions that are found as an exact solution of the vibration problem
in the frequency domain and could capture all necessary high frequencies and mode shapes of
interest. Comparison with the published results of other authors shows the reliability of the
proposed nonlocal dynamic stiffness model.
On that basis, the influence of nonlocal parameters, materials, geometric parameters and

boundary conditions on the vibration frequencies and mode shapes of FGM stepped nanostruc-
tures is investigated. The results obtained from this paper show that there exist critical points,
stepped locations at which the effect on a given frequency is distinct. The nondimensional fun-
damental frequency of stepped FGM structures is most sensitive to the stepped locations and
boundary conditions. Also, the changes of the first three frequencies of the stepped nanostruc-
tures caused by the volume fraction index are more distinct than those caused by nonlocal
parameters. The gap between every two consecutive graphs of the changes of nondimensional
frequencies of FGM stepped structures with different stepped locations, nonlocal parameter and
boundary conditions increase with the decreasing nonlocal parameter and increasing volume
fraction index. Contrary to the changes of nondimensional frequencies, the changes of mode
shapes of the stepped nanostructures caused by nonlocal parameters are more distinct than
those caused by the volume fraction indexes. And the changes of mode shapes of the stepped
nanostructures are more distinct than those of the non-stepped nanostructures. The present
research also shows two cases of the “nonlocal paradox of FGM nanostructures”:

• The first frequency of nanostructures with C-F boundary conditions increases as the other
frequencies decrease;

• The mode shapes of nanostructures with S-S boundary conditions are the same as the
corresponding mode shapes for local Timoshenko beams.

All the mentioned notices are a useful indication for vibration analysis of FGM nanostructures.
The study can be applied to more complex stepped nanostructures.
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